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ABSTRACT. We evaluate several tomographic reconstruction algorithms on the basis of how woll 
one can perform the Rayleigh discrimination task using the reconstructed images. The Rayleigh 
task is defined here as deciding whether a perceived object is either a pair of neighboring points 
or a line, both convolved with a 2D Gaussian. The method of evaluation is based on the re- 
sults of a numerical testing procedure in which the stated discrimination task is carried out on 
reconstructions of a randomly generated sequence of images. The ability to perform the Rayleigh 
task is summarized in terms of a discriminability index that is derived from the area under the 
receiver-operating characteristic (ROC) curve. Reconstruction algorithms employing a nanneg- 
ativity constraint are compared, including maximum a posteriori (MAP) estimation based an  
the Bayesian method with entropy and Gaussian priors as well as the additive and multiplicative 
versions of the algebraic reconstruction technique (ART and MART). The performance of all four 
algorithms tested is found to be similar for complete noisy data. However, for sparse noiseless 
dnla, the MAP algorithm baed  on the Gaussian prior does not perform as well as the others. 

1. I n t r o d u c t i o n  

Appropriate measures of the quality of reconstructed images should ultimately be related 
to how well the images can be used t o  make decisions or estimate relevant physical quan- 
titics. Thc  pcrformance of imaging tasks is basically a statistical matter, not only when 
the da ta  are degraded by random noise, but also when many randomly placed objects are 
reconstructed from limited, noiseless data. As such, a reconstruction technique cannot be 
judged on the basis of a reconstruction of only one scene. We use a method recently intro- 
duced t o  judge the quality of reconstruction by numerically evaluating task pcrformance 
for a specified imaging situation (Hanson, 1987b; 1988a; 1990a). The method consists of a 
Monte Carlo simulation of lhe enlire imaging process including random scene generation, 
da ta  taking, reconstruction, and performance of the specified task. An essential aspect o i  
this mcthod is tha t  the cvalualion is hued on many randondy generated scenes, leading to 
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a statistically significant estimate of performance. This method overcomes the restrictions 
of the standard calculation for the propagation of errors, which is applicable only to image 
noise that is stationary and approximately Gaussian distributed. Nonlinear reconstruction 
algorithms lead to image noise that violates these conditions. We use the abovc technique 
to evaluate the performance of several reconstruction algorithms, all employing the non- 
negativity constraint. Such a constraint has been shown to be of great value in improving 
task performance when dcaling with a paucity of data (Hanson, 1988a; 1990a) for as simple 
a reconstruction algorithm as the algebraic reconstruction technique (ART) (Gordon el al., 
1970). This work expands on the previous findings by consideration of algorithms fuuded  
in the Bayesian method and by investigating the much more complex task of Rayleigh 
discrimination. Besides using the now-familiar entropy prior, we also reintroduce the clas~ 
sic Gaussian or normal prior probability distribution, but with the twist of an ei~forccd 
nonnegativity constraint. 

2. Bayesian Reconst ruct ion 

If measurcmcnts are linearly related to an image and are degraded by additive Gaussian 
noise, the mcasurements can be expressed as: g  = H f  + n, where g represents the vector 
comprising all measurements, f the image vector, n the random noise vector, and If is the 
matrix that specifies the linear relationship between the image and the measurements. In 
the tomographic problems we are considering, the H matrix corresponds to the calculation 
of line integrals through the image, that is, the projection calculation. The Baycsian ail- 
pro;rr.h to image reconstruction leads to the conclusion that the best reconstruction is the 
image that maximizes the poslerior probability. The Bayesian solution thus minimizes 

w )  - (s - H ~ ) ~ R ; '  ( g  - ~ f )  + w) , (1) 

which is -2 times the logarithm of the posterior probability, where the first term is X' aris- 
ing from the likelihood of that particular data set givcn the imagc f. This term measures thc 
disagreement between the image and the data. The second term comes from the assumed 
prior probability distribution. From the point of view of regnlarization t,heory (Na.shcd, 
1081; Tit,trringtnn, l9R.5), this term can control the had behavior of the least-squares so- 
lution that minimizes the first term. In the maximum entropy method, the second term is 
proportional lo the entropy of the irnage 

The sum is over all pixels in the image and f; is aptly called the default value for the 
ith pixel representing the prior model for the reconstruction. The maximum-entropy prior 
implies a solution that is nonnegative. 

We wish to consider an alteruative prior with a significant history in image recovery 
(Andrews and Hunt, 1977) that is based on a Gaussian probability dist,rihution leading to 

where f is thc mean and R f  the covariance matrix of the prior  roba ability distribution that 
is assumed to characlerize the ensemble oli~nages with which one is dealing. In the standard 
Dayesian approach introduced to image reconstruction by Hunt (1977), these quantities 
are assumed to be known a priori. IIunt called this method, based on a Gaussian prior, 
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simply MAP for maximum a posteriori reconstruction. We make a distinction between this 
method and the one based on the entropy prior by calling it GAUSS-MAP. In the present 
imylcmcntation, a nonnegativity constraint is invoked that effectively eliminates the tails 
of the Gaussian distribution for f; < 0. In comparing thc entropy and the Gaussin.11 priors, 
we note that the former excludes zero as a possible reconstructed value, whereas the latter 
does not. Also, the entropic probability distribution has a long tail that drops slowly as 
fi increases (for small a) ,  while the Gaussian possesses a tail that cuts off more rapidly. 
The Gaussian prior explicitly encourages correlations between image values to be specified 
by Rf. It also provides some additional flexibility in controlling the prior as f can be sct 
arbitrarily (e.y., above or below 0) and independently from Rf. In constrast, a basic axiom 
invoked by Skilling (1989) in the derivation of the entropy prior states that no correlat,ion 
bclwccn dinerent pixels should exist. However, this tenet is discarded in the 'New MaxEnt' 
formulation (Gull, 1989). 

We use an iterative proccdurc that is related to the method presented by Butler, Rccds, 
a.nd Dawson (1981). The reconstruction is taken to be the positive part of a dual functional 
that is obtained by adding X k y k v @ ( f  *) to the kth iterate of the reconstruction f k As the 
present GAUSS-MAP algorithm is closely related to the method of steepest descent, it does 
not converge to the solution very quickly. Although this technique is satisfactory for the 
present study, a more sophisticated algorithm (Skilling and Bryan, 1984) might reduce the 
large number of iterations sometimes required to achieve complete convergencc. The CPU 
time is dominated the number of needed projection operations H or, equivalently, back- 
projectio~ls IIT. For GAUSS-MAP the scalar y* must be determined for each iteration by 
multiplication of the incremental change in f k  by the curvature matrix [ K - ' + H T G , ' ~ ] .  
Therefore each iteration requires four equivalent projection calculations. 

f 

The maximum-entropy reconstructions shown here are obtained with the MEMSYS 2 
code*, which is referred to later as ENTROPY-MAP. The operation of this algorithm has 
been described by Skilling and Bryan (1984). We are not using the 'New MaxEnt', which 
is available as MEMSYS 3, but will address its added features in a future publication. 
In the four-dimensional search mode used here, between 6 and 20 equivalent projection 
calculations are rrquircd per iteration, with the average number being about 10. Results 
are also shown for AlUI' (Gordon el al., 1970) and its multiplicative cousin MART, which 
is known to converge to the solution of thc measurement equations with maxin~uln entropy 
(Lent, 1977). Doth algorithms require two equivalent projection calculations per iteration. 
They are noteworthy for their speedy convergcncc to an acceptable solution. 

3. Es t ima t ion  of Rayleigh Task Performance 

A natilral imaging task, named after Lord Raylcigh, is to determine whcthcr an observed 
astronomical object is actually a pair of stars or a single star. Prcciscly sthted, wr will 
consider the task of distinguishing between a pair of point-like objects and a line, hot11 
convolved with a 2D Gaussian spread function. By specifyi~y h a r y  pairs that are farther 
apart than thc width of thc Gaussian and by specifying the alternative line to he simi1.u 
in appearance, the decision must be made on the basis of more than an observed slight 
asymmetry; an honest dip must be olrserved between the two lobes of a reconstructed 
binary for it to be distinguished from a line. To accomplish the stated binary decision, it 

* Maximum Entropy Data Consultants Ltd., Royston, England 
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Fig. 1. The first of ten randomly generated scenesused to evaluatate performance of the Rayleigh 
discrimination task. Each scene contains 8 lines and 8 pairs of point-like objects, all convolved 
with the same 2D Gaussian function. 

is necessary to take into account many parameters including signal amplitude, major axis 
orientation, length of line or point separation, and possibly background level. As these are 
not specified a priori, they need to be estimated as part of the task. 

A Monte Carlo technique, one that employs pseudo-random numbers to generate its 
results, is used to simulate the entire imaging process from scene generation to the final 
task performance. The general strategy for simulation of the scenes, data taking, and 
reconstruction is straightforward (Hanson, 1988a; 1990a). What is new here is the Rayleigh 
task, which affects how the scenes are generated and how the reconstructions are analyzed 
to carry out the implied binary decision. The scenes used to test task performance are 
generated each with eight binary pairs and eight lines randomly placed and randomly 
oriented with the circle of reconstruction inscribed within a 128 x 128-pixel image. The 
binary pairs of points are separated by 6 pixels and the lines are 10.4 pixels long. Each of 
these types ofobjectsis convolved with asymmetric 2D Galmian function with a FWHM of 
4 pixels. The line length and amplitude are chosen to minimize the mean-square difference 
between the two possible objects. The purpose is to make the two objects similar in 
appcarancc so the decision must bc made on thc basis of thc details of thc image, not 
gross features such as integrated intensity (Hauson, 1983). The first of the series of images 
generated for testing performance of the Rayleigh task is shown in Figure 1. 

The Rayleigh task is ca.rried out using each reconstrnction as follows. Undcr the pre- 
vailing assumption that the orientation, amplitude, asymmetry, position, binary separation 
(or line length), and Gaussian width of the objects are not known beforehand, these must 
be determined from the reconstruction. The background is also assumed t o  be unknown. 
The eight unknown parameters arc fit to rninimizc the rncan-square difTerencc bctwccn lhc 
reconstructed region and the model for the object over a 16-pixel-diam region centered 
on each object. The optimal decision variable would be the logarithm of the ratio of the 
likelihoods of the two hypotheses. The mean-square error is the proper likelihood function 
whcn the error fluctuations arc independent, stationary, and Gaussian distributed. How- 
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cver, the error fluctuations in reconstructions obtained under nonnegativity constraints do 
not conform to these assumntions. Unfortunatelv. their com~lete  charactcrization would be " ,  
nearly impossible t o  incorporate into the analysis. To surpass such obstacles the decision 
variable is taken t o  be the difference between the mean-square error for the two hypotheses. 
Frequency histograms of the decision variable for each of the two possible classes of objects 
are formed. A receiver operating characteristic (ROC) curve is generated from these as 
described previously (Hanson, 1988a; 199Oa). The area under the ROC curve is an appro- 
priate measure of how well the distinction between the two hypotheses is made. A useful 
way t o  summarize the significance of the area is to quote the discriminability index d ~ .  
An alternative index d' is based on the rms widths and separation of the two histograms. 
It is equal to da when the histograms are Gaussian shaped. However, d' is not used here 
because the histograms of the decision variable may not be Gaussian. The index d a  is 
preferable as it is invariant under any monotonic transformation of the decision variable 
whereas d' is not. 

4. Results 

We report on the results of carrying out the Rayleigh testing procedure for several different 
data-acauisition conditions. In the examnles each view consists of 128 uarallel ~roiections . " 

and the projection set covers the full range of angles, 180". In some circumstances noise is 
included by adding to each measurement a random number taken from a Gaussian proba- 
bility distribution. As the projection a t  each angle is convolved with a triangular waveform 
with a FWHM of three projection samples before reconstruction, it is the final rms noise 
value after smoothing that is quoted. 

Some ubiquitous features of the analysis are the following. In all cases the operating 
conditions for each algorithm are chosen to maximize the discriminability index for the 
Rayleigh task. The two MAP algorithms depend on the value for the rms noise level 
assumed in the measurements a,. The value of a in Eq. (2) is adjusted in ENTROPY- 
MAP t o  make the rms residual a, the same as a,, under the classic assumption that this is 
appropriate. The GAUSS-MAP algorithm allows no such adjustment; the value of a, simply 
determines the weight given t o  the regularization term. The number of iterations used in 
these algorithms does not matter much once convergence has been achieved, a condition 
that is met in most of the situations studied. For the GAUSS-MAP algorithm, the image 
J' is set to a constant 0.0174 to reflect the known mean of the images in the ensemble. 
The diagonal elements of the matrix Rf are set to (0.080)2 to match the variance of the 
ensemble. The off-diagonal elements are set to zero, in effect making no prior assumptions 
about the correlation between pixels. In the spirit of Bayesian analysis, the ENTROPY- 
MAP parameter f is also set equal to the mean of the ensemble. We use a fixed relaxation 
factor of X = 1 for GAUSS-MAP and X = 0.5 for ENTROPY-MAP. 

The number of iterations used in ART and MART can influence the find reconstruc- 
tiuns, especially fur overdelermined bul noisy measurements. Therefore Lhe number of 
iterations and the relaxation parameters (Ao,  the initial relaxation factor, and rA, which 
multiplies the relaxation factor after each iteration) are varied in the present study to op- 
timize performance of the Rayleigh task as described by Hanson (1988b). The form of 
the updating used in the MART algorithm is not truly multiplicative, hut amounts to an 
additive backprojection in the logarithm of the reconstructed image. In addition the cffect 
on the reconstruction in any one update is limited to a factor of ten (increase or decreasc). 
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Figure 2 shows the results of using the algorithms tested to reconstruct Figure 1 from 
100 views with an rms noise of 2. For comparison, the peak projection value of one of the 
objects taken along its long direction is 4.2. In this case the data are essentially complete, 
but noisy. The four reconstructions possess a fair degree of similarily. In the MART 
result we see ihe lmtdwcy to accentuate the peaks and suppress the background anomalies 
more than in the others. The statistical nalurc of task performance can be apprcciated 
by comparing object-by-object these rcconstructions with the actual initial scene shown in 
Figure 1. The noise fluctuations in the reconstructions make some of the bars look more 
like binaries and conversely. The only way to quantitatively measure how well the Raylei@ 
task can be performed in this imaging situation is t o  obtain the results of analysis of many 
reconstructed objects of both types. This evaluation is done by randomly generating nine 
more scenes like the one in Figure 1. All 80 objects of both types are fit, as described above, 
to yield a decision variable. T h e  results are summarized in Tables 1 and 2 in terms of the 
discriminability index da derived from the area under the ROC curves. The d~ values are 
very nearly the same lor all the algorithms. The estimated statistical uncertainly in the 
dA values for this data-collection situation is 0.24. The agreement between the diiferent 
algorithms is much better than this because the results are highly correlated for the reason 
that the exact same data are employed for all the algorithms. 

We conclude that even the algorithms of the maximum-likelihood type (ART and 
MART) can be operated in a fashion to properly average over numerous projections. For 
this averaging to occur, the relaxation factor for the last few iterations should he approx- 
imately equal to the reciprocal of the number of views. The MART algorithm tends to 
converge to a solution of the measurement equalions substantially faster than ART, so 
fewer iterations are required for MART. If MART is given many more ilcralions, i t  lends 
to 'overiit' the measurements, resulting in spiky looking reconstructions. This overfitting 
behaviour can be induced in all the algorithms presented here when dealing with noisy data. 
For the MAP algorithms it occurs when too small an rms value of the noise is assumed. 

Figure 3 shows the results of reconstructing Figure 1 with grossly incomplete and noise- 
less data. In this situation the reconstructions obtained by the four algorithms show some 
diferences. The erroneous fluctuations in the recoustructions have a different charactcr 
from those in Figure 2 as they arise from the deficit in the number of a.vailahle measure- 
ment,s and not from random errors in the measurements. These artifacts have a fairly 
similar structure in all the reconstructions shown. No overfitting phenomcnon is observed 
for any of the algorithms in this case of noiseless data. From Tables I and 2 it is seen that 
the da value for GAUSS-MAP is 42% lower than for ENTROPY-MAP and MAW.  This 
poorer performance mirrors the fact that the objects in the GAUSS-MAI' reconstruction 
appear to he reconstructed with slightly poorer spatial resolution. The explanation for the 
decrease in resolution lies in the form of the reconstruction dictated by the prior. The 
Gaussian prior implics that the reconstruction is a linear combination of backprojections, 
whereas for the entropy prior, it is the logarithm of the reconstruction tha.t is proportional 
to the backprojection lor~n.  The iuherently multiplicative form implied by the entropic 
prior is advantageous in reconstructing pointlike objects placed on a zero background. The 
d~ value for ART is about 15% lower than for ENTROPY-MAP and MART reflecting the 
fact that the ART reconstruction in Figure 3 appears slightly more blurred. 

The results for another data-acquisition situation, 8 vicws with rms l~oise = 0.5, are also 
summarized in the tables. The classic condition of x2 = number of measurements implies 
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Fig. 2. Reconstructions of Figure 1 from 100 noisy projections obtained will, h u r  dilltrent 
reconstrucLiurl slgorilhnls that cnlploy u. nonncgntivity constraint. 

0, = a,. For this col~dilion we find the ENTROPY-MAP algorilhrn yiclds dn = 0.926, 
about 20% lower than for the optimized a,. This classic condition on X' is not opt,im;tl fur 
task performance, a conclusion previously arrived a t  by Myers and Hanson (1990) on thc 
hasis of object dctcction and also suggested by others, including Gull (1989). 

5 .  Discussion 

We have seen that  the constrained ART, MART, GAUSS-MAP, and ENTROPY-MAP ad- 
gorilhms yield similar R,ayleigh discriminabilities for some conditions of da ta  acquisition. 
'Shc similarity between reconstructions obtained by different algorithms might have been 
anticipatcd on the basis of the relationship betweell diflerent  neth hods that is the essence 
of ~egularizat,ion theory (Nashed, 1981; 'Titterington, 1985). Howcvcr, for very incomplete 
noiseless data, the M A N  and ENTROPY MAP slgoritl~nrs acl~icve better perlonuance ol  
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Fig. 3. Reconstnlctions of Figure 1 from 6 noiseless projections obtained with the nonnegativity 
constramt. x 

the ltayleigh task than the A W  and GAUSS-MAP algorithms. The reason for this i m  
proved performance may lic in the lnultiplicative updatinginherent in the forrncr algorithms 
in conlrast to the additive updating of the latter. 

To achieve the bcst results, the operating conditions must be carefully chosen (II:LIISOI~, 
1988b; 1989; 1990b). An advantage of the MAP algorithms is that  rcg i~ lar iza l io~~ is explic- 
itly incorporated into their formulation, obviating the necessity to stop t,he algorithm itt a. 
critical number of iterations. However, when the MAP formulations employed in this study 
have to cope with noisy data,  i t  is still necessary t o  pick one or morc parameters, which c a n  
dramatically affect the results. It  will be inkresting t o  see whether the 'classic' MaxEnt 
formulalion (Gull, 1989) with its intrinsic detrrminatiott of n overcomes I.llis diliiculty. 

In many reports concerning the use of MAXENT, the parameter f is not set eqrial 
to the mean of the ensemble of expected images. Kather, i t  is often set to a very small 
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1 Number 1 A0 1 RMS 1 GAUSS-MAP 1 ENTROPY-MAP 1 

Table 1. Summary of the performance of the Rayleigh task based on reconstructions by two 
Bayesian algorithm employing a nonnegativity constraint. The operating conditions are 
chosen by adjusting the assumed rms noise o, to maximize the discriminability index da. 
The resulting rms residual o, is presented. 

Proj. 
100 
8 
6 

Table 2. Summary of the performance of the Rayleigh task based on constrained reconstructions 
obtained with two Corms of the Algebraic Reconstruction Technique. ART and MART, which 
employ additive and multiplicative updating, respectively. The number of iterations N and 
the relaxation parameters are chosen to maximize the discriminability index dA as described 
by Hanson (1988b). 

(deg.) 
180 
180 
180 

Number 
Proj. 
100 
8 
6 

value, perhaps-indicative of the background value. This practice is perhaps understand- 
able because f is the default value and will tend t o  be favored in the absence of good 
information about the scene being imaged. But this practice seems t o  be a t  odds with the 
historical interpretation of the Bayesian approach in which the  prior typically represents 
the properties of the ensemble of imagcs being studied (Hanson, 1987). Nevertheless, when 
we use 0.001 for f ,  instead of 0.0174, we find the Rayleigh task performance is cssentially 
unchanged for all circumstances reported in the tables. We note that  the choice o f f  or f 
affects the bias in the amplitudes of low-contrast objects in reconstructed images (Myers 
and Hanson, 1990; Hanson, 1990a). 

Auxiliary runs of the GAUSS-MAP algorithm without the nonnegativily constraint 
show the same trends as previously observed by Hmson (1988a; 1989, 1990a; 1990~)  for 
ART reconstructions obtained with and without the nonnegativity constraint. The non- 
negativity constraint is found t o  be  very useful when data are meager and noisclcss, but, 
for complete and noisy data, the constraint does not improve the performance of vision 
tasks. 
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